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We consider the spectrum of the quantum HamiltonianH for a system of N one-
dimensional particles. H is given by H=;N

i=1−
1
2mi

“
2

“x2i
+;1 [ i < j [N Vij(xi−xj)

acting in L2(RN). We assume that each pair potential is a sum of a hard core for
|x| [ a, a > 0, and a function Vij(x), |x| > a, with >.a |x−a| |Vij(x)| dx <.. We
give conditions on V−

ij (x), the negative part of Vij(x), which imply that H has no
negative energy spectrum for all N. For example, this is the case if V−

ij (x) has
finite range 2a and

2mi F
2a

a
|x−a| |V−

ij (x)| dx < 1.

If V−
ij is not necessarily small we also obtain a thermodynamic stability bound

inf s(H) \ −cN, where 0 < c <., is an N-independent constant.
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Let us consider the spectrum of the N-particle Hamiltonian, with x×
k ¥ Rd,

H=C
N

i=1
−

1
2mi
Di+ C

1 [ i < j [N
Vij(x

E×
i − xE×

j ) — T+V

acting in L2(RdN). In particular, we are interested in lower bounds for the
spectrum of H and conditions on the pair potentials Vij which imply that H
has no negative energy spectrum. Conditions on Vij which imply self-
adjointness and lower boundedness of H are well-known (see refs. 1 and 2).
However, the form of the lower bound cannot be used to exclude negative



energy spectrum. Another form of a lower bound has recently been given in
ref. 3, namely, denoting s(A) for the spectrum of A,

inf s(H) \ C
i < j

inf s(h −ij)

where h −ij=
−1

(N−1) 2mij
D×
xE +Vij(x

E×), mij=mimj/(mi+mj), is a one-particle
Hamiltonian acting in L2(Rd). For d=3 it is known that if V−

ij , the nega-
tive part of Vij, satisfies

(N−1)(2mij)1
1
4p
25F |V−

ij (x)| |x−y|−2 |V−
ij (y)| dx dy6

1
2

< 1

then inf s(h −ij) \ 0. Thus inf s(H) \ 0. This condition holds if each Vij ¥
L

3
2(R3) and small which is an improvement over the result of Theorem

X.111.27 of ref. 4 which requires Vij ¥ L
3
2+e 5 L

3
2 − e for some e > 0. The

drawback of this bound is that the potentials are smaller as N increases.
Thus the following question arises: can any region of negative poten-

tial in the pair potential be permitted so that H has no negative energy
spectrum for all N. We are unaware of any result of this nature. Another
question concerning the negative part of the pair potential is how rough
and singular it can be and still insure the thermodynamic stability bound
(see refs. 5 and 6 for sufficient conditions). For low density systems in three
dimensions a bound of the form H> cN, c > 0 has been obtained in ref. 7
and as the density goes to zero an exact lower bound is obtained. These
results are obtained assuming that the pair potential is positive. It is
conjectured that the same bound holds if the two-body scattering length is
positive and there are no N-body bound states. Of course in treating
neutral atoms or molecules as point particles there is always the van der
Waals long range negative potential.

Let us now consider one-dimensional systems with hard core two-body
potentials which are rough (but locally integrable). If the negative part falls
off sufficiently rapidly at infinity in a integrable sense and if it is small (see
the theorem below for the precise condition) we show that there is no
negative energy spectrum for all N. Without the smallness condition a
thermodynamic stability bound is also obtained. Our proof of these results
is suprisingly simple. The analogous questions in two or three dimensions
are important and open.

Before stating our result we make some comments on the intuition for
forming or excluding bound states for large N. If the pair potential is
an attractive square well a simple variational calculation shows that
inf s(H) < −cN2, c > 0, as each pair potential makes an order 1 contribu-
tion and the kinetic energy contributes order N. This can be avoided with a
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repulsive core. In the extreme case of an infinite hard core of radius R0 and
an attractive well of radius roughly 2R0 then the potential energy term
should only make an order N contribution (2 nearest neighbors for dim. 1;
6 (12) nearest neighbors for dimension 2(3); 2d for a Zd lattice Hamiltonian).
For a bound state the particles are partially localized so the kinetic energy
should be of order N. Thus for a sufficiently shallow well the energy is
positive. For the one-dimensional case a region of positive potential is
needed even for two particles as an arbitrarily small negative potential gives
rise to a bound state.

For our one-dimensional result in the theorem below we impose an
infinite hard core condition on the pair potentials. RN is replaced by
RN
c ={x=(x1,..., xN) ¥ RN | |xi−xj | > a; a > 0, for all i ] j} and Dirichlet

conditions are taken on the boundary. We assume that each Vij(u) ¥ R,
u ¥ R, |u| > a, is even and >.a (u−a) |Vij(u)| du <.. Then H is defined as
the self-adjoint operator associated with the form closure of the form sum
on C.0 (R

N
c )×C.0 (R

N
c ) … L2(RN

c )×L2(RN
c ).

To state our result, we introduce a potential W−
i (x) which is, roughly

speaking, the most negative potential felt by particle i at x due to particles
1, 2, ..., i−1, i+1,..., N at fixed positions. The rather complicated defini-
tion below becomes clear in the course of the proof of the theorem.

Let Bli, l=1, 2,..., N−1, i=1, 2,..., N, be the set of l element subsets
of (1, 2,..., i−1, i+1,..., N). Let pl be a permutation of (b1,..., bl) ¥ Bli.
Further let u l — (u1,..., ul), uk an integer, with u1=0, us+1+a < us. We
define a potential W−

i (xi), xi ¥ (a,.), by

W−
i (xi) — inf

l, ul, Bli, pl

C
l

m=1
V−
ipe(bm)(xi−um). (1)

We have the

Theorem.

(a) If

ci=2mi F
.

a
|u−a| |W−

i (u)| du < 1 (2)

for all i, then H has no negative energy spectrum for all N.

(b) If c=max ci <. then we have the bound inf s(H) \ −cŒN for
some N-independent cŒ <..

We remark that if V−
ij (x) has finite range then there are only a finite

number of terms (independent of N) that contribute to the sum on the
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right side of W−
i (x) of (1). Also if the pair potential is bounded above by

−c(1+|x|)−a, c > 0, it is known that there are an infinite number of negative
energy bound states for a > 2. The above integral in (2) is finite for a > 3
which is an indication of the influence of distant particles to enhance binding.

We prove the theorem for an eZN lattice approximation to H then the
theorem follows by norm resolvent convergence (see refs. 8 and 9) of the
lattice approximation to the continuum. In this way, we keep the proof
elementary, avoiding direct integral decompositions and singular subsets ofRN.

We define the quadratic form

(f, H ef)=C
i

1f, − D
e
i

2mi
f2+ C

1 [ i < j [N
x

ef(x) V eij(xi−xj) f(x)

where the inner product ( · , · ) is in l2(eZ
N
c ), ZN

c ={x=(x1, x2,..., xN) ¥
eZN |xi−xj | > a, a ¥ eZ for all i ] j}, f ¥ l2(eZ

N
c ) has finite support and

(f, −D eif)=;x e
−1 |f(..., xi+e,...)−f(..., xi,...)|2 where the sum is over

x ¥ eZN. V eij(u) is a smooth approximation which cuts off |Vij(u)| at e−1.
From now on, for simplicity, we suppress e from the notation. We also use
the following facts. Let A1, A2,... be self-adjoint;

(1) If A=;n An then inf s(A) \;n inf s(An)

(2) If A=;n À An then inf s(A)=infn(inf s(An)).

We partition H as

H=C
i

35 −1
2mi
Di+

1
2
C
j ] i

Vij(xi−xj)6 —Hi
4 .

Thus inf s(H) \;i inf s(Hi). But Hi=;r ÀHir, r — (r1, r2, ..., r̂i, ..., rN),
|rk−rl |> a, k ] l, where r̂i means omit ri, and

Hir=
−1
2mi
Di+

1
2
C
j ] i

Vij(xi−rj), (3)

i.e., a one particle Hamiltonian for particle i moving in a potential with the
jth particle fixed at rj. We refer to rj as the center of the potential. The
set r, considered as a subset of Z, decomposes Z into disjoint internal
intervals Ir. Furthermore, Hir of (3) decomposes into a direct sum over
these intervals, i.e., Hir can be written

Hir=C
Ir

ÀHilr
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where Hilr acts in l2(Ir). Thus inf s(Hir)=inflr s(Hilr ) and

inf s(H) \C
i
inf
r, Ir
s(Hilr ).

Thus the problem is reduced to obtaining a lower bound for the spectrum
of Hilr .

Consider the case i=1 and r2 < r3 < · · · < rN. The other cases are
treated similarly. For the interval (rk, rk+1), 2 [ k [N−1, the Hamiltonian
under consideration is

H1k=
−D1
2m1

+
1
2

C
N

j=2
V1j(x1−rj) (4)

where x1 ¥ (rk+a, rk+1−a) and D1 has Dirichlet boundary conditions (b.c.)
at rk+a and rk+1−a. We further partition the Hamiltonian of (4) writing

H1k=5
1
2
−D1
2m1

+
1
2

C
j [ k

V1j(x1−rj)6

+51
2
−D1
2m1

+
1
2

C
j > k

V1j(x1−rj)6 —Hk++Hk− .

Hk+(Hk− ) takes into account the effect of the particles to the left (right) of
particle one. We now obtain lower bounds for inf s(Hk± ). We note that
inf s(Hk+) is bounded below by inf s(H −

k+) where H −

k+ is Hk+ extended to
the semi-infinite interval (rk+a,.) replacing the Dirichlet Laplacian with
Dirichlet b.c. only at rk+a and replacing each Vij with its negative part.
Similarly inf s(Hk− ) is bounded below by inf s(H −

k− ) where H −

k− is Hk−

extended to the semi-infinite interval (−., rk+1−a).
The picture now emerges for obtaining a potential and Hamiltonian

such that the inf of its spectrum is a lower bound for the spectrum of each
component Hamiltonian of a partition. We see that each Hamiltonian of a
partition is bounded below by a Hamiltonian with a Dirichlet Laplacian on
a semi-infinite interval and a potential which is a sum of a subset of the
pair potentials {V1j: j > 1} with the centers placed outside the semi-infinite
interval. By translation invariance of the pair potentials we can take the
semi-infinite interval to be (a,.) and the centers of the potentials to lie in
(., 0] with one of the centers at zero. These same considerations apply for
i > 1. Minimizing the potential over the number in a subset and locations
of the centers of the pair potentials gives us the minimum potential
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W−
i (xi), xi ¥ (a,.), which is defined in (1) before the theorem. Thus we

arrive at

inf s(H) \C
i
2 inf s 1 −D

D
i

4mi
+

1
2
W−

i
2=C

i
inf s 1 −D

D
i

2mi
+W−

i
2 . (5)

The operator on the righthand side of (5) is a discrete version of the
zero angular momentum radial Schrödinger operator. Passing to the con-
tinuum there is no negative energy spectrum if

2mi F
.

a
|u−a| |W−

i (u)| du < 1

by Thm. XIII.9 of ref. 4. Similar considerations hold for the e approximate
by treating V−

ij as a perturbation of − 1
2mi
DDi in the resolvent equation and

using the explicit form for the (− 1
2mi
DDi −z)−1 for z ¨ [0,.).

We make these remarks more explicit. On the half-line x ¥ [0,.], the
resolvent of −d2/dx2 with Dirichlet boundary conditions at zero, is, for
z ¨ [0,.), x, y \ 0,

(HD−z)−1 (x, y)=
1

2`−z
[e−`−z |x−y|−e−`−z |x|e−`−z |y|].

The resolvent for H=HD±W exists for z=−o2 if the Hilbert–
Schmidt norm of W

1
2(HD+o2)−1 W

1
2, with W positive, is less than one as

the Neumann series for

(H−z)−1=(HD−z)−
1
2 [1+(HD−z)−

1
2 W

1
2W

1
2(HD−z)−

1
2]−1 (HD−z)−

1
2

converges. Here we use |A+A| [ |A+A|H−S=|AA+|H−S withA=W
1
2(HD−z)−

1
2.

We write MZ(x, y)=q(xZ y) W
1
2(x)(HD−z)−1 (x, y) W

1
2(y) and for z=−o2

|M> |
2
H−S=

1
o2

F
.

0
W(x) e−2ox F

x

0
sinh2 oyW(y) dy dx

[ F
.

0
W(x) xe−2ox

sinh ox
ox
5Fx

0

sinh oy
oy

W(y) y dy6 dx

[ 5 sup
x > y \ 0, o > 0

1e−2ox sinh ox
ox

sinh oy
oy
26

×F
.

0
W(x) x 5Fx

0
W(y) y dy6 dx.
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Since sinh u
u =>10 cosh au da is monotone increasing and [ cosh u the first

factor in [ · ] is bounded by 1 and the iterated integral is 12 (>.0 W(u) u du)2.
The same bound holds for M< so that, for o > 0,

|M|H−S [ F
.

0
W(u) u du

which leads to our smallness condition on the pair potential in part (a) of
the theorem.

Furthermore by the Lebesgue dominated convergence theorem
|M|H−S ||QoQ. 0 which proves our assertion for the thermodynamic
stability bound of part (b) of the theorem. By strengthening the conditions
on W we can obtain a more explicit lower bound for s(H).

In this way, we obtain the integral condition on the pair potentials of
the theorem and the proof is complete.
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